An overview of Feeding Chickens for increasing Performance and Productivity

Feeding Chickens for increasing Performance and ProductivityAn essential part of raising chickens is nourishing – feeding makes up the significant cost of production and great nutrition is reflected in the bird’s performance and its productivity.

Feeding Options

The most advantageous method for feeding chickens is with a well balanced pelleted ration, regardless of whether the birds are restricted inside or permitted to range outside. Most diets contain corn for vitality, soybean meal for protein, and vitamin and other mineral supplements. Commercial rations regularly contain antibiotics to promote and enhance the development, coccidiostats for battling coccidiosis, and mold inhibitors. In any case, it is possible to acquire unmedicated encourage check nourish marks to check whether they contain feed additives. In the industry, feed is pelleted so the bird can eat more at one time. Chickens are nibblers and do visit to the nourish trough for little dinners, which requires vitality. Pelleting lessens the measure of vitality required for a feathered creature to bolster.  Distinctive rations are frequently utilized, depending upon the production stage of the bird. Starter rations are high in protein- an expensive feed ingredient. However, grower and finisher rations can be lower in protein since older birds require less. Access to clean water is important. Levels of total dissolved solids over 3000 ppm in the water can meddle with poultry well being and production.

Home-Mixed Rations

Poultry feed ingredients incorporate energy concentrates, for example, oats, corn, grain, wheat, sorghum, and milling by-products. Protein concentrates incorporate soybean meal and other oilseed meals, cottonseed meals, animal protein sources, grain legumes, for example, dry beans, peas, and alfalfa. Grains are generally ground to enhance absorbability. Since protein is one of the most expensive feed ingredients, the industry utilizes focused on rations and decrease the measure of protein in the eating routine as the chickens develop; notwithstanding, it may not be cost-effective to have diverse eating diets for starters, growers, and finishers. The vitamin pre – mix is normally included, however might be diminished by utilizing horse feed. Different plants also give vitamins in their leaves, hulls, and wheat. Fish oil can give vitamins A and D. The yeast gives a ration of the B vitamins. UV light is a decent source of vitamin D for going chickens. Trace mineral is normally added to poultry diets, yet different sources can give minerals. Meat and bone meal is a fantastic source of minerals, especially calcium and phosphorus, and additionally being a decent protein source. Probiotics are once in a while given to the chicks during placement and before transportation.

Certified Organic Diets

Home-mixed diets are especially valuable to certified natural poultry producers. In spite of the fact that pre-mixed natural poultry rations are accessible for procurement, they can be costly and maybe ought to be dispatched from long distances.

Feed Additives in the Diet

Feed additives are added to improve the efficiency of broiler growth, laying capacity of layers, prevent diseases and to promote health. The feed additives used in poultry diet include amino acids, vitamins, antimicrobials, pH control agent, and enzymes. Protein and amino acids form an important building block in poultry nutrition. The quality of protein is graded by its illegal amino acid digestibility, the higher the digestibility the better is the ingredient as a protein source. Deficiency of essential amino acids results in retarded growth or reduced egg size or reduced egg production.

To help the industry in balancing the protein turnover and amino-acid optimization of the birds, We at Vinayak Ingredients (India) Private Limited introduces one of our niche products with a brand name; “KiFAY”- an Amino Acid Optimiser.  It is an all in one product for optimizing your poultry feed and production.

MOA OF KiFAY

It improves the availability of insulin receptors, which are potential binding sites for IGF-1 and thus potentiating the action of IGF-1 resulting in improved  ileal digestibility of various amino acids in the feed and also improves the their uptake from blood. Thus improved amino acid accretion from blood results in a better protein turnover. It also increases the efficacy and production of IGF-1 by stimulating insulin production, resulting in increased bio-availability of IGF-1 in the liver.

The reason why we should use KiFAY:-

  • In broilers it increases the weight by improving feed conversion ratio (FCR) and protein utilization.
  • In layers KiFAY enhances the quality and other parameters of egg like;
  • Egg shell weight by 9-10%, Egg shell thickness by 15%, Egg weight 8%, Egg length by 15-16%, Egg width by 32-33%
  • It also reduces faecal nitrogen deposition by improving protein turnover.
  • It acts as a hepatoprotectant by inhibiting free radicals causing damage to the liver cells.
  • It optimizes immunomodulation by enhancing Gut associated lymphoid tissues (GALT)

Thus KiFAY acts as a performance enhancer in poultry.

Maintaining protein nutrition in chickens

Maintaining protein nutrition in chickens - Vinayak IngredientsNecrotic enteritis in broiler chickens can be caused due to the increased level of protein, 2-6 weeks post hatching. This is because of the over growth of 
C. perfringens in the small digestive system, increasing from a typical level of 104 CFU to 107 or 109 CFU per gram of digesta and causing harmful diseases.

With the increased dietary protein level, there will likewise be an increased activity of the trypsin in the small digestive system. This will, thusly, prompt to speedier arrival of coccidia from their oocytes which will lead so dynamic as to be less responsive to immunization.

In situations where such bacterial and protozoan are probably going to prevail, it might then be advantageous, among different measures, to reduce the supply of protein and maintain it underneath the prescribed range. It is likewise important to consider the amino acid balance of the protein source to be utilized. Methionine and glycine, for instance, have been known to empower growth and establishment of C. perfringens and different pathogens in the gut. Accordingly, the utilization of protein sources having over the top measures of these amino acids ought to be limited.

Additionally, there are some protein sources, for example, cottonseed meal, raw soybean, and flax cakes, which contain varying measures of anti-nutritional factors, for example, trypsin inhibitors, gossypol, and glucosides. At the point when ingested by the bird, these components would then apply some damaging consequences for the small digestive tract, in this manner impeding the safe mechanical assembly having nearby as well as systemic defensive capacities. Excessive utilization of such protein sources in the diet ought to, therefore, be avoided as well.

Monitoring Chicken Feed for Enhanced Productivity and Performance

Monitoring Chicken Feed for Enhanced Productivity and PerformanceAn essential part of raising chickens is nourishing – feeding makes up the significant cost of production and great nutrition is reflected in the bird’s performance and its productivity.

Feeding Options
The most advantageous method for feeding chickens is with a well balanced pelleted ration, regardless of whether the birds are restricted inside or permitted to range outside. Most diets contain corn for vitality, soybean meal for protein, and vitamin and other mineral supplements. Commercial rations regularly contain antibiotics to promote and enhance development, coccidiostats for battling coccidiosis, and mold inhibitors. In any case, it is possible to acquire unmedicated encourage check nourish marks to check whether they contain feed additives. In the industry, feed is pelleted so the bird can eat more at one time. Chickens are nibblers and make visit to the nourish trough for little dinners, which requires vitality. Pelleting lessens the measure of vitality required for a feathered creature to bolster. Distinctive rations are frequently utilized, depending upon the production stage of the bird. Starter rations are high in protein- an expensive feed ingredient. However, grower and finisher rations can be lower in protein since older birds require less. Access to clean water is important. Levels of total dissolved solids over 3000 ppm in the water can meddle with poultry wellbeing and production.

Home-mixed Rations
Poultry feed ingredients incorporate energy concentrates, for example, oats, corn, grain, wheat, sorghum, and milling by-products. Protein concentrates incorporate soybean meal and other oilseed meals, cottonseed meals, animal protein sources, grain legumes, for example, dry beans, peas, and alfalfa. Grains are generally ground to enhance absorbability. Since protein is one of the most expensive feed ingredients, the industry utilizes focused on rations and decrease the measure of protein in the eating routine as the chickens develop; notwithstanding, it may not be cost-effective to have diverse eating diets for starters, growers, and finishers. Vitamin pre-mix is normally included however might be diminished by utilizing horse feed. Different plants also give vitamins in their leaves, hulls, and wheats. Fish oil can give vitamins A and D. Yeast gives a ration of the B vitamins. UV light is a decent source of vitamin D for going chickens. Trace mineral is normally added to poultry diets, yet different sources can give minerals. Meat and bone meal is a fantastic source of minerals, especially calcium and phosphorus, and additionally being a decent protein source. Probiotics are once in a while given to chicks during placement and before transportation.

Certified Organic Diets
Home-mixed diets are especially valuable to certified natural poultry producers. In spite of the fact that pre-mixed natural poultry rations are accessible for procurement, they can be costly and maybe ought to be dispatched from long distances.

Feed Additives in the Diet
Feed additives are added to improve the efficiency of broiler growth, laying capacity of layers, prevent diseases and to promote health. The feed additives used in poultry diet include amino acids, vitamins, antimicrobials, pH control agent, and enzymes. Protein and amino acids form an important building block in poultry nutrition. The quality of protein is graded by its illeal amino acid digestibility, the higher the digestibility the better is the ingredient as a protein source. Deficiency of essential amino acids result in retarded growth or reduced egg size or reduced egg production.

To help the industry in balancing the protein turnover and amino-acid optimization of the birds, We at Vinayak Ingredients (India) Private Limited introduces one of our niche product with a brand name; “KiFAY”- an Amino Acid Optimizer. It is an all in one product for optimizing your poultry feed and production.

MOA OF KiFAY: It improves the availability of insulin receptors which are potential binding sites for IGF-1 and thus potentiating the action of IGF-1 resulting in improved ileal digestibility of various amino acids in the feed and also improves the their uptake from blood. Thus improved amino acid accretion from blood results in better protein turn over. It also increases the efficacy and production of IGF-1 by stimulating insulin production resulting in increased bio-availability of IGF-1 in the liver.
The reason why we should use KiFAY:-

  • In broilers it increases the weight by improving feed conversion ratio (FCR) and protein utilization.
  • In layers KiFAY enhances the quality and other parameters of egg like;
  • Egg shell weight by 9-10%, Egg shell thickness by 15%, Egg weight 8%, Egg length by 15-16%, Egg width by 32-33%
  • It also reduces faecal nitrogen deposition by improving protein turnover.
  • It acts as a hepatoprotectant by inhibiting free radicals causing damage to the liver cells.
  • It optimizes immunomodulation by enhancing Gut associated lymphoid tissues (GALT)

Thus KiFAY acts as a performance enhancer in poultry.

Tricks to Optimise Feed Intake in Young Broilers

Tricks to Optimise Feed Intake in Young BroilersToday, feed represents up to 70% of aggregate generation costs. That is the reason productivity of utilisation is a standout amongst the most vital elements as farmers hope to look after efficiency. The most widely recognised technique for broilers is feed conversion ratio (FCR), computed by the measure of feed required per kilogram of body weight pick up, and ought to be as low as could be allowed. For the duration of the life of the broiler, the best FCR is found in the initial five to seven days, because of low or no heat generation in chicks. These results in a lower calorific expense and a general lower support cost.  Another contributing component to the lower FCR is the fat and protein from the yolk sac. Be that as it may if early feed utilisation is constrained, chicks will utilise the protein from the yolk sac for energy rather than development.

Feeding During Brooding

For best results, it is important to guarantee adequate access to feed. The most imperative piece of arrangement for brooding, along these lines, is to give adequate feeding space to the birds by having supplemental chick trays or potentially chick paper. In the event that chick trays are utilised, there ought to be one plate for every 50 chicks, uniformly disseminated all through the brooding territory. Invigorate the trays a few times each day with new feed, as doing this once per day doesn’t fortify feed allow enough.  At the fourth day, the trays can be drawn nearer to the feed system, before evacuating them at day seven. At the point when utilising chick paper, no less than half of the brooding territory ought to be secured with a paper sort sufficiently solid to last until in any event day 5. The paper should be set close to the drinking system. To guarantee that all arrangements have the greatest advantage, a simple crop-fill assessment ought to be done the morning after placement. A sample of no less than 100 chicks from three positions in the house is required. Without a doubt the base of chicks with full yields ought to be 85% as of now. This basic assessment will let you know as to whether you have adequate supplementary feed accessible.

Seven-Day Body weight

The significance of feed intake during the initial seven days can’t be over-accentuated. It is the main chance to increase such development and give the overall performance. Achieving higher seven-day body weights for the most part results in higher body weights toward the end of the flock, better consistency and lower mortality through less culling. It has likewise been demonstrated that higher seven-day body weights impact the general FCR of a broiler. There is a straight impact, demonstrating that an expansion in seven-day body weight lessens the FCR.

Consistency Matters

Numerous components diminish FCR connected with expanding seven-day body weight, however the most critical one is better consistency. Expanded feed accessibility lessens the quantity of non-starters and helps littler chicks adjust. In a flock with a normal seven-day weight of 182g, approximately 12% of chicks will at present be beneath 160g. The flock could enhance the feed admission of weaker chicks by expanded supplementary feeding space and feed accessibility, raising the general execution.  Consistency of a flock begins from the first hour after arrangement and the impact of uniform feed admission can’t be corrected later. To take full advantage of the advanced broilers’ hereditary potential, chicks ought to never need to look for their next meal. Guaranteeing great feed accessibility will guarantee utilisation at an early age, bringing about effective seven-day body weights, along these lines establishing the framework for the best feed effectiveness.

Neonatal Poultry Nutrition

Neonatal Poultry NutritionOver the last five decades improvements in nutrition and genetic selection have reduced the time required to produce a 2 Kg broiler within 1.7 FCR. The neonatal period is defined as the first seven days of the production cycle after hatch. It is a crucial time when the chick requires special management and nutrition. Efforts to control metabolic disorders such as ascites and leg problems have led to recommending early feed restriction during the first two weeks post-hatch. Thus, it is essential to know the effect of poultry management practices on subsequent chick development. A paper presented in the ohio university explains the importance of the relationship of neonatal nutrition to muscle development. Muscle growth and development can be divided into two distinct periods: hyperplasia and hypertrophy.

Hyperplasia is an embryonic period characterised by proliferation of muscle fiber number whereas hypertrophy is a post-hatch muscle growth which results in the enlargement of existing muscle fibers. Nutritional deprivation has a significant effect on the myoblast cells. Research was conducted to evaluate the effects of an immediate post-hatch feed restriction on breast muscle formation. The increased number of nuclei in muscle fibers correlates with increased synthesis of protein and muscle fiber size enlargement. Myoblast cells are extremely responsive to the mitogenic effects of their environment, including nutrition. A 42-day length of study conducted with feed restriction on the neonatal chickens showed a significant difference morphologically in the development and structure of the breast muscle between the feed restricted and unrestricted diet treatments. It also increased deposition of fat in the breast muscle of the birds with the 20% feed restriction.

Conclusion:

Nutrient deprivation in the first few days after hatch may interfere with normal muscle protein development in broiler chicks. However, if you believe that flavor and juiciness follow the fat, there may be some benefit from early feed restriction.

Effect of Protein and Amino Acids on Fat Deposition in Poultry

Effect of Protein and Amino Acids on Fat Deposition in Poultry - Vinayak IngredientsThe abdominal fat tissue is very important in chickens due to its rapid growth as compared with other fat tissues. Most fatty acids are produced in the liver and stored as triglycerides in adipose tissues. Thus, the abdominal fat is a reliable parameter for estimating total body fat content as it directly correlates with the total lipid content in avian species. Nutritional factors play a key role in regulating body fat deposition. Therefore, this article discusses the effect of two such nutritional factors viz., protein and amino acids on the abdominal fat content and the mechanism of regulating abdominal fat deposition in poultry in a beneficial manner.

Protein is the most expensive component of poultry diets. The increase in the dietary protein content improves the daily weight gain, carcass yield, and meat quality by reducing body fat deposition and increasing protein content. A report shows that reducing dietary protein level during the starter, grower, and finisher phase, and compared with normal-protein diets as recommended by NRC, 1994 led to a significant increase in the abdominal fat content. An analogous study where increasing dietary protein level in the diets of broiler chickens in all three phases led to a significant reduction abdominal fat deposition compared with diets formulated according to NRC (1994) causing lean broiler chickens. Therefore, dietary protein content must play a direct or indirect role in the regulation of lipid metabolism. In 2002, it was found that reducing dietary protein content upregulates malic enzyme mRNA expression increases malic enzyme activity in the liver of broilers compared with the control, and vice versa. Further study also showed that increasing dietary protein content caused a significant reduction in hepatic enzyme mRNA expression in the livers of broiler chickens. Therefore, dietary protein level directly affects body fat deposition. Thus, it is important to suffice the protein requirements of birds to produce high-quality meat with low-fat deposition.

At present, only methionine, lysine, and arginine are known to beneficially regulate body fat deposition in poultry. Therefore, the addition of these amino acids in poultry diets should be ensured to prevent unnecessary fat deposition. Among these, methionine is the first limiting amino acid in poultry diet. It is essential amino acid as it directly affects on growth performance and helps in producing lean meat. A report shows that inclusion of L-methionine in poultry diet leads to a significant reduction in body fat content. The effect of dietary L-methionine in reducing the fat deposition may be associated with changes in lipolysis and lipogenesis. Lysine also has a prominent role in meat quality by increasing protein deposition, reducing the water-holding capacity, and enhancing muscle pH. The lysine supplementation in poultry diets significantly enhances lean meat production. A meat-type ducks fed with lysine-deficient diet gave significant high abdominal fat percentage while the inclusion of lysine eliminated this effect. Hence, addition of lysine in poultry diets promotes lean meat production by reducing carcass fatness via lipogenesis inhibition.

Another essential amino acid is the arginine which plays multiple roles in poultry production, implicated in reduction of carcass fat deposition. A study reports a significant reduction in the abdominal fat content in Japanese quails at 42 day of age 2.0% arginine supplementation at day zero of incubation. A corresponding study reported that providing 1.0% more arginine in addition to the NRC (1994) recommendations reduces the abdominal fat content by decreasing the activities of enzymes involved lipogenesis. In avian species, therefore, dietary L-arginine supplementation inhibits certain hepatic enzymes, which causes a reduction in the abdominal fat content by reducing the size of abdominal adipose cells.

Hence, the fat-reducing effects of protein and certain amino acids have not been fully clear. Thus this article makes an effort to elucidate our current understanding of the mechanism related to the effects of protein and amino acids that beneficially regulate abdominal fat deposition in poultry.

Step Towards “Ammonia- Free” Environment For Poultry

Step Towards “Ammonia- Free” Environment For PoultryNitrogen is highly found in animal excreta and can exist in various forms. One such form is “Ammonia”. Primarily ammonia is a result of breakdown of urea present in urine of birds by the enzymes; urease and uricase. It is a potential source to create bad odour and negatively impact air and water quality and animal as well as human health. Presence of ammonia above 25ppm in the poultry house can damage the respiratory system of the birds and also there is a reduction in immune system; leading to declining flock health and performance. In addition to the effects on bird’s health, ammonia has significant hazardous effect on the caretakers and to the environmental ecology.

High levels of ammonia emission inside the poultry house have also become a cause of concern for the atmosphere outside the poultry house. Therefore there is a great need to develop strategies to reduce ammonia formation, volatilization, or downwind transmission of ammonia after it is volatilised from the poultry manure to minimise the harmful effects of ammonia on animal and human health as well as the environment.

Keeping this in mind and with a view to develop ‘ammonia- free ‘and organic environment for all, Vinayak Ingredients have launched a product with a brand name “KiFAY” which is a blend of various herbal extracts in a diatomaceous carrier which acts as a DL-Methionine replacer and a nutritional feed additive and goes directly into the feed and acts as an amino acid optimiser and improves the apparent ileal digestibility of the feed and hence improves the protein turnover this also reduces the amount of amino acid degradation by the liver and excretion by kidney which form the major part of nitrogen compounds excreted by poultry. In turn these compounds are also responsible for ammonia and smell in the poultry house, apart from posing stressors for liver and kidney.

Vinayak Ingredients have also launched a Bio-security product which combats the remaining ammonia emission in the droppings of the birds which acts as a litter amendment system under the brand name of “ESSENTIOLITT-POULTRY”. Essentiolitt poultry is an ammonia binder and has bactericidal action on urease and uricase enzymes and inhibit the ammonia formation by increasing 45% nitrogen retention and ammonia emission.

7 Main Nutrition Requirements in Egg Layers

7 Main Nutrition Requirements in Egg Layers - Vinayak IngredientsPoultry diets are a mixture of several feed stuffs such as soybean meal, cereal grains, fats, animal by-product meals, and vitamin and mineral premixes. Here are the few main nutrients which producer must not ignore when planning the feed diet.

ENERGY

The main source of energy for poultry is dietary carbohydrates. Corn, grain sorghum, wheat, and barley are important carbohydrates to poultry diets. These adversely affect the digestive processes of poultry when present in sufficient dietary concentrations. For example, pentosan and beta glucans of rye and barley respectively increase the viscosity of digesta and helps in nutrient absorption of poultry. Supplementation of rye or barley with dietary enzyme improves nutrient utilisation and growth of young poultry.

PROTEIN

Dietary requirements for protein are actually requirements for the amino acids contained in the dietary protein. They are main constituents of structural and protective tissues, such as feathers, bone matrix, skin, and ligaments, including organs and muscles. The individual amino acids and short peptides after digestion-absorption may serve a variety of metabolic functions and precursor to biochemical pathways. Insufficient dietary protein leads to slow growth or less productivity.

MINERAL

Minerals are the inorganic part of feeds or tissues. Calcium and phosphorus are essential for the formation and maintenance of the skeleton and eggshell formation. Sodium, potassium, magnesium, and chloride function with phosphates and bicarbonate to maintain homeostasis of osmotic relationships and pH throughout the body. The forms of phosphorus, such as ATP and phospholipids if present in plants, can be digested by poultry; however, such digestible forms usually account for only 30 to 40 percent of the total phosphorus. The remaining phosphorus is present as phytate phosphorus and is poorly digested. Trace elements, including copper, iodine, iron, manganese, selenium, and zinc are required in small amounts in the diet. Trace elements function as part of larger organic molecules. Iron is a part of haemoglobin and cytochromes, and iodine is a part of thyroxine.

VITAMINS

Vitamin C is synthesised by poultry and is, accordingly, not considered a required dietary nutrient. The dietary requirement for vitamin E is highly variable and depends on the concentration and type of fat in the diet, the concentration of selenium, and the presence of prooxidants and antioxidants. Vitamin K activity is exhibited by a number of naturally occurring and synthetic compounds with varying solubilities in fat and water.

WATER

Water must be regarded as an essential nutrient, although it is not possible to state precise requirements. The amount needed depends on environmental temperature and relative humidity, the composition of the diet, rate of growth or egg production, and efficiency of kidney resorption of water in individual birds.

XANTHOPHYLLS

The carotenoid pigments not only provide yellow-orange coloration of egg yolks and poultry fat but also contribute to coloration of the skin, feet, and beak. Alfalfa meal contains lutein which provides a yellow colour, whereas corn and corn gluten meal contain primarily zeaxanthin which impart as orange-red colour. Synthetic carotenoids are also used approved by the regulatory agencies used in poultry diets as the concentration of the desired pigments in natural feed stuff is not always constant.

ANTIMICROBIALS

Antimicrobial agents are nutritional feed additives/growth promoters and are not nutrients as they are essential to poultry. They are included in diets to improve growth, efficiency of feed utilisation and livability. They are added at relatively low concentrations (1 to 50 mg/kg), depending on the agent and stage of development of poultry.

Poultry diets are a mixture of several feed stuffs such as soybean meal, cereal grains, fats, animal by-product meals, and vitamin and mineral premixes. Here are the few main nutrients which producer must not ignore when planning the feed diet.

Bone Defects In Fast Growing Chicken

Bone Defects In Fast Growing Chicken - Vinayak IngredientsBirds pertaining rapid growth and heavy body weight, are usually associated with a week skeletal body. This has been implicated in musculoskeletal and cardiovascular disease in meat-type poultry. It does not always necessarily result in disease but many of the complications can be eliminated by slowing down the growth rate and research on this has produced contradictory results. Therefore it would be more correct to be called as metabolic disease, since most of these diseases are due to metabolic imbalances associated with rapid growth.

If the hypothesis that musculoskeletal deformity caused due to rapid growth is valid, then we must take into account how specific defects could be associated with rapid growth.

1) The defect may be due to increase in body weight.

2) The defect could occur because of undeveloped tissues (bones, ligaments, tendons, and muscles).  This is because as the strong tissue is produced, remodelling and bone alignment would require more duration than rapid growth.

3) The defect could be related to high amino acid supplement, enzyme, hormone, or oxygen requirement by specialised cells.

4) The defect may be due to metabolic by-products such as carbon dioxide and lactic acid that are increased by rapid growth.

5) Rapidly dividing cells could be more prone to toxic or metabolic injury.

Most of the skeletal deformities in birds result in birds that are not able to walk. Birds in these cases find difficult to get feed and water due to chronic pain and anxiety associated with aggression from other birds.

Skeletal deformities can be caused in a variety of ways. Nutritional deficiencies are one of the causes in skeletal disease in all birds. Birds that are growing fast have higher requirement of essential amino acid supplement and have more skeletal defects than in slower growing strains. Mechanically induced or trauma-associated problems are also much more frequent in fast-growing broilers. These problems may be caused due to immaturity and weight than rapid growth because tissue becomes stronger and more resilient with age. This age-related effect is particularly true of bone, tendon, and ligament. Toxins in feed or water can cause skeletal deformities. Toxin effects are not usually associated with rapid growth, although rapidly growing birds would consume more of the offending product. Genetic problems may also result in skeletal defects, but not related to growth.

To conclude, prevention of musculoskeletal disease in chickens must be the goal, and attempts should be made to find management and nutritional techniques to reduce bone defects such as better lighting programs appear to improve broiler mobility and better methods of catching and transferring birds.

Ileal Amino Acid Digestibility

Ileal Amino Acid Digestibility - Vinayak IngredientsKifay, the natural amino acid optimiser is the product to watch as it has the capability to enhance the ileal amino acid digestibility due to the specific natural ingredients in its composition.

Amino acid supplementation in poultry is considered as an essential part of poultry nutrition. Methionine is the first limiting amino acid in poultry important for optimum growth, feed conversion and immunity. The protein nutrition is directly related to the illeal amino acid digestibility; this term can be divided further into apparent illeal amino acid digestibility or true amino acid digestibility.

The debate is already on as to what type of digestibility is to be considered while making a feed formulation; although it is undeniable that digestibility of protein is utmost important and all digestible amino acid systems are superior to use of total amino acid system in feed formulation.

The amino acids contained in feed-stuffs are not fully available to animal. It is therefore more efficient to formulate diets using values for digestible amino acids rather than total amino acids. The optimisation of amino acid supply leads to increased animal performance and, because the ingested protein is better balanced for animal’s requirements, nitrogen excretion is reduced.