Six Important Measures for Poultry Farming

Six Important Measures for Poultry FarmingOver past few decades the poultry industry has shown tremendous growth to meet the increasing demand in supply of meat and eggs. However, poultry farming is associated with a variety of toxic compounds such as ammonia, pesticides, pathogens and other airborne emissions. So, here are the six measures to keep in mind when planning for poultry farming.

1. Diet : Chickens are omnivores. Therefore, they should typically be fed a prepared feed that is balanced for all nutrients. However, feed consumption may increase in the winter, and decrease in the heat of the summer. An important point of poultry diet is administering access to clean and fresh water. This is especially true in the summer as they cool themselves by panting.

2. Housing : A quality pen is important to poultry farming. Chickens are descended from jungle birds, which mean they like to be up high, so a place for them to roost is important. Sheds must provide protection from the weather and predators. Their main predators are rats, owls, hawks, and cats. An enclosed space for them to stay at night is essential to their protection. It should have a heat lamp for the winter months as well as ventilation for fresh air.

3. Daily care : Chickens need to be fed and water, and changed daily. The pen must be cleaned out weekly to maintain sanitation and control odour.

4. Bird Health : Healthy birds show peculiar signs such as they are alert and active with bright eyes, and they will be moving around. The poultry droppings show firm and grayish brown coloration. If the chickens aren’t normal, start taking correct measures to cure the disease.

5. Sanitation : An important element to bird health is sanitation. The shed and outdoor area must be cleaned weekly or as needed to control manure and odour build up. The waterers and feeders should be regularly disinfected and cleaned.

6. Poultry litter management : Poultry litter is made up of waste feed, digesta, intestinal flora and mineral by-products from metabolic processes and water. This causes problems with a foul odour and humidity.

So how to manage the poultry litter?

  • The First method is thoroughly cleaning the shed more than once a year. This will control the odour and fly populations.
  • The Second method is to pasture the chickens. Moving of shelters can be a valuable tool while pasturing chickens and reducing cleaning time.
  • A third option is composting. Composting can be done right in the chicken’s bedding.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

What is the effect of KiFAY on IGF-1 and protein accretion in broilers?

What is the effect of KiFAY on IGF1 and protein accretion in broilers - Vinayak IngredientsA comparative study was performed to investigate the efficacy of KiFAY as a feed additive on performance parameters, thyroid, and pancreatic hormone levels in broilers. Ninety birds (Vencobb 400) were randomly divided into three groups viz., Control (no DL-methionine supplementation), Treatment 1 (containing added DL-methionine) and Treatment2 (containing KiFAY and without DL-methionine supplementation). The performance parameters (weekly body weight, body weight gain, feed intake, and feed consumption ratio) were recorded and calculated during the whole study of 4 weeks. Analysis of insulin and insulin-like growth factor (IGF1), triiodothyronine (T3), thyroxine (T4) and thyroid stimulating Hormone (TSH) were performed at the end of the study.

The results show that birds on supplementation of KiFAY performed significantly (p<0.001) better than other treatments. The weekly body weight, body weight gain, feed intake and feed consumption ratio improved in KiFAY treated birds. The study shows an increase in insulin and IGF1 levels (p<0.001) in KiFAY than other treatments. Serum T3, T4 and TSH levels in the treatment2 were higher than other treatments (p<0.001). The KiFAY supplementation was able to improve performance with associated responses at a hormonal level in broilers.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Effect of Protein and Amino Acids on Fat Deposition in Poultry

Effect of Protein and Amino Acids on Fat Deposition in Poultry - Vinayak IngredientsThe abdominal fat tissue is very important in chickens due to its rapid growth as compared with other fat tissues. Most fatty acids are produced in the liver and stored as triglycerides in adipose tissues. Thus, the abdominal fat is a reliable parameter for estimating total body fat content as it directly correlates with the total lipid content in avian species. Nutritional factors play a key role in regulating body fat deposition. Therefore, this article discusses the effect of two such nutritional factors viz., protein and amino acids on the abdominal fat content and the mechanism of regulating abdominal fat deposition in poultry in a beneficial manner.

Protein is the most expensive component of poultry diets.

The increase in the dietary protein content improves the daily weight gain, carcass yield, and meat quality by reducing body fat deposition and increasing protein content. A report shows that reducing dietary protein level during the starter, grower, and finisher phase, and compared with normal-protein diets as recommended by NRC, 1994 led to a significant increase in the abdominal fat content. An analogous study where increasing dietary protein level in the diets of broiler chickens in all three phases led to a significant reduction in abdominal fat deposition compared with diets formulated according to NRC (1994) causing lean broiler chickens. Therefore, dietary protein content must play a direct or indirect role in the regulation of lipid metabolism. In 2002, it was found that reducing dietary protein content upregulates malic enzyme MRNA expression increases malic enzyme activity in the liver of broilers compared with the control, and vice versa. Further study also showed that increasing dietary protein content caused a significant reduction in hepatic enzyme MRNA expression in the livers of broiler chickens. Therefore, dietary protein level directly affects body fat deposition. Thus, it is important to suffice the protein requirements of birds to produce high-quality meat with low-fat deposition.

At present, only methionine, lysine, and arginine are known to beneficially regulate body fat deposition in poultry. Therefore, the addition of these amino acids in poultry diets should be ensured to prevent unnecessary fat deposition. Among these, methionine is the first limiting amino acid in poultry diet. It is an essential amino acid as it directly affects on growth performance and helps in producing lean meat. A report shows that inclusion of L-methionine in poultry diet leads to a significant reduction in body fat content. The effect of dietary L-methionine in reducing the fat deposition may be associated with changes in lipolysis and lipogenesis. Lysine also has a prominent role in meat quality by increasing protein deposition, reducing the water-holding capacity, and enhancing muscle pH. The lysine supplementation in poultry diets significantly enhances lean meat production. A meat-type ducks fed with lysine-deficient diet gave significant high abdominal fat percentage while the inclusion of lysine eliminated this effect. Hence, the addition of lysine in poultry diets promotes lean meat production by reducing carcass fatness via lipogenesis inhibition.

Another essential amino acid is the arginine which plays multiple roles in poultry production, implicated in the reduction of carcass fat deposition. A study reports a significant reduction in the abdominal fat content in Japanese quails at 42 days of age, 2.0% arginine supplementation on day zero of incubation. A corresponding study reported that providing 1.0% more arginine in addition to the NRC (1994) recommendations reduces the abdominal fat content by decreasing the activities of enzymes involved lipogenesis. In avian species, therefore, dietary L-arginine supplementation inhibits certain hepatic enzymes, which causes a reduction in the abdominal fat content by reducing the size of abdominal adipose cells.

Hence, the fat-reducing effects of protein and certain amino acids have not been fully clear. Thus, this article makes an effort to elucidate our current understanding of the mechanism related to the effects of protein and amino acids that beneficially regulate abdominal fat deposition in poultry.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Step Towards “Ammonia- Free” Environment For Poultry

Step Towards “Ammonia- Free” Environment For PoultryNitrogen is highly found in animal excreta and can exist in various forms. One such form is “Ammonia”. Primarily ammonia is a result of breakdown of urea present in urine of birds by the enzymes; urease and uricase. It is a potential source to create bad odour and negatively impact air and water quality and animal as well as human health. The Presence of ammonia above 25ppm in the poultry house can damage the respiratory system of the birds and also there is a reduction in the immune system; leading to declining flock health and performance. In addition to the effects on the bird’s health, ammonia has a significant hazardous effect on the caretakers and to the environmental ecology.

High levels of ammonia emission inside the poultry house have also become a cause of concern for the atmosphere outside the poultry house. Therefore, there is a great need to develop strategies to reduce ammonia formation, volatilization, or downwind transmission of ammonia after it is volatilized from the poultry manure to minimize the harmful effects of ammonia on animal and human health as well as the environment.

Keeping this in mind and with a view to develop ‘ammonia- free’ and organic environment for all, Vinayak Ingredients have launched a product with a brand name “KiFAY” which is a blend of various herbal extracts in a diatomaceous carrier which acts as a DL-Methionine replacer and a nutritional feed additive and goes directly into the feed and acts as an amino acid optimiser and improves the apparent ileal digestibility of the feed and hence improves the protein turnover this also reduces the amount of amino acid degradation by the liver and excretion by kidney which form the major part of nitrogen compounds excreted by poultry. In turn these compounds are also responsible for ammonia and smell in the poultry house, apart from posing stressors for liver and kidney.

Vinayak Ingredients have also launched a Bio-security product which combats the remaining ammonia emission in the droppings of the birds which acts as a litter amendment system under the brand name of “ESSENTIOLITT-POULTRY”. Essentiolitt poultry is an ammonia binder and has bactericidal action on urease and uricase enzymes and inhibit the ammonia formation by increasing 45% nitrogen retention and ammonia emission.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

7 Main Nutrition Requirements in Egg Layers

7 Main Nutrition Requirements in Egg Layers - Vinayak IngredientsPoultry diets are a mixture of several feed stuffs such as soybean meal, cereal grains, fats, animal by-product meals, and vitamin and mineral premixes. Here are the few main nutrients which producer must not ignore when planning the poultry feed formula for layers.


The main source of energy for poultry is dietary carbohydrates. Corn, grain sorghum, wheat, and barley are important carbohydrates to poultry diets. These adversely affect the digestive processes of poultry when present in sufficient dietary concentrations. For example, pentosan and beta glucans of rye and barley respectively increase the viscosity of digesta and helps in nutrient absorption of poultry. Supplementation of rye or barley with dietary enzyme improves nutrient utilisation and growth of young poultry.


Dietary requirements for protein are actually requirements for the amino acids contained in the dietary protein. They are main constituents of structural and protective tissues, such as feathers, bone matrix, skin, and ligaments, including organs and muscles. The individual amino acids and short peptides after digestion-absorption may serve a variety of metabolic functions and precursor to biochemical pathways. Insufficient dietary protein leads to slow growth or less productivity.


Minerals are the inorganic part of feeds or tissues. Calcium and phosphorus are essential for the formation and maintenance of the skeleton and eggshell formation. Sodium, potassium, magnesium, and chloride function with phosphates and bicarbonate to maintain homeostasis of osmotic relationships and pH throughout the body. The forms of phosphorus, such as ATP and phospholipids if present in plants, can be digested by poultry; however, such digestible forms usually account for only 30 to 40 percent of the total phosphorus. The remaining phosphorus is present as phytate phosphorus and is poorly digested. Trace elements, including copper, iodine, iron, manganese, selenium, and zinc are required in small amounts in the diet. Trace elements function as part of larger organic molecules. Iron is a part of haemoglobin and cytochromes, and iodine is a part of thyroxine.


Vitamin C is synthesised by poultry and is, accordingly, not considered a required dietary nutrient. The dietary requirement for vitamin E is highly variable and depends on the concentration and type of fat in the diet, the concentration of selenium, and the presence of prooxidants and antioxidants. Vitamin K activity is exhibited by a number of naturally occurring and synthetic compounds with varying solubilities in fat and water.


Water must be regarded as an essential nutrient, although it is not possible to state precise requirements. The amount needed depends on environmental temperature and relative humidity, the composition of the diet, rate of growth or egg production, and efficiency of kidney resorption of water in individual birds.


The carotenoid pigments not only provide yellow-orange coloration of egg yolks and poultry fat but also contribute to coloration of the skin, feet, and beak. Alfalfa meal contains lutein which provides a yellow colour, whereas corn and corn gluten meal contain primarily zeaxanthin which impart as orange-red colour. Synthetic carotenoids are also used approved by the regulatory agencies used in poultry diets as the concentration of the desired pigments in natural feed stuff is not always constant.


Antimicrobial agents are nutritional feed additives/growth promoters and are not nutrients as they are essential to poultry. They are included in diets to improve growth, efficiency of feed utilisation and livability. They are added at relatively low concentrations (1 to 50 mg/kg), depending on the agent and stage of development of poultry.

Poultry diets are a mixture of several feed stuffs such as soybean meal, cereal grains, fats, animal by-product meals, and vitamin and mineral premixes. Here are the few main nutrients which producer must not ignore when planning the feed diet.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Bone Defects In Fast Growing Chicken

Bone Defects In Fast Growing Chicken - Vinayak IngredientsBirds pertaining rapid growth and heavy body weight in chicken, are usually associated with a week skeletal body. This has been implicated in musculoskeletal and cardiovascular disease in meat-type poultry. It does not always necessarily result in disease but many of the complications can be eliminated by slowing down the growth rate and research on this has produced contradictory results. Therefore it would be more correct to be called as metabolic disease, since most of these diseases are due to metabolic imbalances associated with rapid growth.

If the hypothesis that musculoskeletal deformity caused due to rapid growth is valid, then we must take into account how specific defects could be associated with rapid growth.

1) The defect may be due to increase in body weight.

2) The defect could occur because of undeveloped tissues (bones, ligaments, tendons, and muscles).  This is because as the strong tissue is produced, remodelling and bone alignment would require more duration than rapid growth.

3) The defect could be related to high amino acid supplement, enzyme, hormone, or oxygen requirement by specialised cells.

4) The defect may be due to metabolic by-products such as carbon dioxide and lactic acid that are increased by rapid growth.

5) Rapidly dividing cells could be more prone to toxic or metabolic injury.

Most of the skeletal deformities in birds result in birds that are not able to walk. Birds in these cases find difficult to get feed and water due to chronic pain and anxiety associated with aggression from other birds.

Skeletal deformities can be caused in a variety of ways. Nutritional deficiencies are one of the causes in skeletal disease in all birds. Birds that are growing fast have higher requirement of essential amino acid supplement and have more skeletal defects than in slower growing strains. Mechanically induced or trauma-associated problems are also much more frequent in fast-growing broilers. These problems may be caused due to immaturity and weight than rapid growth because tissue becomes stronger and more resilient with age. This age-related effect is particularly true of bone, tendon, and ligament. Toxins in feed or water can cause skeletal deformities. Toxin effects are not usually associated with rapid growth, although rapidly growing birds would consume more of the offending product. Genetic problems may also result in skeletal defects, but not related to growth.

To conclude, prevention of musculoskeletal disease in chickens must be the goal, and attempts should be made to find management and nutritional techniques to reduce bone defects such as better lighting programs appear to improve broiler mobility and better methods of catching and transferring birds.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Role of Antioxidants in Feed

Role of Antioxidants in FeedAntioxidants in feed play a major role in animal health, production and performance. This is due to the detrimental effects of radicals and toxic products of their metabolism on various metabolic processes. It is a well known fact that oxidative stress is involved in many degenerative disorders. The oxidative free radicals are therefore considered as pathobiochemicals mechanism for initiating or progression of various diseases. The prooxidant-antioxidant balance can be regulated by optimal nutrient uptake or providing herbal antibiotics. Thus, the essential step in maintaining the balance between the oxidative damage and antioxidative defence in the animal body would be to boost the antioxidant capacity by optimising the dietary intake of antioxidants.

Vitamin C is a water-soluble antioxidant. It is an important anti-stress agent. However, it can be easily oxidized. Sources of vitamin C are citrus fruits and vegetables. Vitamin C is required in collagen biosynthesis and protein metabolism.

Vitamin E is the found in the biological membranes and lipid droplets. Vitamin E is absorbed in the small intestine with various efficacious depending on the diet composition, level of supplementation, age, sex and other individual characteristics of animals. It is the main chain-breaking antioxidant in biological systems.

Carotenoid is a natural pigment, responsible for yellow, orange and sometimes red pigmentation’s in plants, insects, birds and marine animals. They possess antioxidant activity. They have some health promoting properties, including immune system modulation. They are found in some plant-derived feed ingredients.

Manganese has an essential part of a range of enzymes taking part in antioxidant protection, bone growth and egg shell formation carbohydrate and lipid metabolism including processing of cholesterol.

Zinc is the second most abundant trace element trace element in mammals and they take part in antioxidant defence as an integral part of SOD, hormone secretion, keratin generation and epithelial tissue integrity immune function.

Iron has a vital role in antioxidant defence as an essential component of catalase, energy and protein metabolism, hence respiratory carrier, electron transport, oxidation-reduction reaction.

Poultry Feed Supplements, Cattle Feed Supplements, Swine Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Do you know the good, the bad and the ugly of inflammation in poultry?

Inflammatory responses in birds are because of an immune response. These immune responses can be non-specific (innate) immunity and specific (adaptive) immunity.  Thus, the inflammatory responses can be cell specific as in case of cell mediated immune responses which include T or B lymphocyte responses. These are localized or site specific, whereas non-specific responses are more generalized involving phagocytic cells and innate antibody.  A generalized mass inflammatory response has an overwhelming effect on today’s commercial poultry. The chain reaction of events caused by an antigen always involves the innate immunity reaction prior to the involvement of cell mediated immunity. As we learnt in in vaccination basics, vaccines improve specific antibody titers to prevent infection of target microbes. But does this stop inflammatory responses arising from the innate side of the bird? Do these inflammatory responses affect poultry?

Immunity in its most non-specific forms has more demerits than otherwise. The preventive blanket of mucin and ciliary responses as in case of respiratory and gut associated infections is affected the most in the generalized inflammatory tidal wave. Many researchers have associated tethered mucin thinning and reduced ciliary activity as a primary reason for an active infection in birds. Once opportunistic commensals evade, they spread fast. Most cell mediated responses which may be associated with these commercials would respond very late to such an onslaught. The most pronounced effects of these infections would be in high stress conditions, especially in heat stress. Heat stress and high ammonia concentrations or similar stresses would require rapid panting behavior which would mimic generalized inflammatory responses.

Immunization reactions are common in poultry where the generalized immunity might be one of the reasons for morbidity. The birds are at this stage in their young, but antibody deficient forms. As it is, Vaccination is a boon in the poultry industry but frequent respiratory outbreaks could point a direction towards controlling the span of their inflammatory reign. We have seen protection from certain diseases provided with warmth generated from poultry body, and have seen several mortalities from heat stress, similarly balancing this double edged sword should be left to nature. It is most reassuring to see the improving specifics in immunization, but at the same time it is scary to see the broadening antigen carrying potential of the microbes. All considered, surely inflammation would play a vital part in the future of poultry rearing.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Poultry Gut Microbiome

Poultry Gut MicrobiomeThe microbiome of the gastrointestinal (GI) tract of poultry is very diverse yet relatively stable in a dynamic state. The poultry (e.g. duck, chicken and turkey) GI tract consists of cloaca, colon, cecum, small intestines (duodenum, jejunum and ileum), gizzard, proventriculus, crop and esophagus. The GI tract of the poultry is much shorter than that of mammalian animals. But it contains highest bacterial abundance and diversity. The bacteria found in the intestine mostly include Escherichia coli, Lactobacillus, Bacteroids, Eubacterium, Peptostreptococcus, Propionibacterium as predominant organisms. Other group of micro organisms such as anaerobic, gram-negative cocci, facultative anaerobic cocci and streptococci are also found in the GI tract. In this article we briefly discuss the factors affecting the poultry gut micro biome and its importance for poultry nutrition.

Microbiome and Host

Many intestinal bacteria hydrolyze carbohydrates to simple sugars which are further fermented to short chain fatty acids (SCFA) (viz., butyrate, propionate and acetate) by other intestinal bacteria. The SCFA are utilized as a source of energy and carbon. Gut bacteria also contribute to host nitrogen metabolism. These bacteria metabolize uric acid to NH3, which is utilized by the host to synthesize a few amino acids such as glutamine. Gut micro biome of poultry may also serve as a source of vitamin to its host. Mucins secreted by goblet cells of the gut are important source of carbon, nitrogen and energy for some commensal and pathogenic bacteria. Gut micro biome also has impact on intestinal morphology of poultry. One such effect is evident when birds raised on a conventional diet show shorter intestinal villi and shallow crypts with low load of bacteria. However, dietary supplementation of probiotic organisms increases villus height: crypt depth ratio in ileum of broilers.

Microbiome and Immunity

The first line of defense mechanism in the inner surface of avian gut is the gel-like mucus layer formed from mucin glycoprotein produced by the goblet cells. The mucus layer prevents the intestinal pathogens from penetrating into intestinal epithelium. The disruption of the mucus layer is probably due to the severe necrosis of the intestinal mucosa which results in vast shedding of goblet cells. Production of beta-defensin is another important strategy present on the intestinal epithelial surface. Βeta-defensin are produced by avian macrophage, heterophils and epithelial cells that kills various intestinal pathogens by disrupting cell membrane permeability. In birds, the cell mediated immunity (T and B cells) can be found in dispersed areas (lamina propria and epithelium) and in more organized lymphoid tissues (Payer’s patches and bursa of fabricius).

Microbiome and Diet

Diet has great potential to modulate the host digestion and nutrient absorption. Wheat, barley or rye-based diets have more impact on the gut micro biome. These diets contain high levels of water-soluble, indigestible, non-starch polysaccharide that favor necrotic enteritis. Excessive non-starch polysaccharide leads to rise in digesta viscosity, decreased digesta passage rate and a decline in nutrient digestibility. Another potential diet ingredient, soyabean is used as a source of protein to promote the growth lactobacilli population and reduce the number of coliforms in cecum of poultry. Some of the gut micro organisms are also influenced by dietary fat source. Dietary enzymes such as xylanase and beta-glucanase, increase intestinal lactic acid bacteria(LAB) and decrease the population of adverse and pathogenic bacteria such as E. coli. Dietary supplementation with xylanase and beta-glucanase protects against necrotic enteritis as the enzyme breakdown the non starch polysaccharide in the diet and reduce the digesta viscosity. Plant derived trans-cinnamaldehyde and eugenol are effective in reducing S. enteritis colonization in 20-d old broiler chickens. Others such as blend of essential oils, containing thymol, carvacrol, eugenol, curcumin and piperin reduce the colonization and proliferation of such pathogens. Antibiotic growth promoter (AGP) is another feed additive used to improve feed efficiency, increase animal growth and maintain animal health. The inclusion of AGP in poultry diet reduces the incidence of disease and promotes better performance of the birds by inhibiting the growth of enteric pathogens. However, due to rising antibiotic resistance among the pathogens, the use of AGP has been prohibited. The proliferation of the bacteria present in the gut can be increased by the ingestion of prebiotics.

Prebiotics are polysaccharides such as galatosaccharide (GOS) and fructosaccharide (FOS).

GOS favors the growth of Bifidobacteria in the GI tract of broiler chicken.

Competition for nutrient and attachment site

The GI tract of newly hatched chick is sterile, but is immediately colonized by surrounding organisms. Over the period of time, normal colonization and succession of gut micro biome takes place in healthy adult poultry’s intestine. The GI tract serves as an ideal habitat for micro organisms however, due to limited space and resources; there is competition among organisms for nutrient resources. Some bacteria produce bacteriostatic or bactericidal substances to kill its competitors. The LAB ferment carbohydrates to organic acids and inhibits the growth of certain pathogens such as E. coli and Salmonella by reducing the pH of the gut. Certain bacteria such as Enterococcus sp., Pediococcus sps., Bacillus subtilis also produce antimicrobial agent called bacteriocins to selectively inhibit the growth of other bacteria. However, pathogens are adapted to new environment very fast mediated by a process such as conjugation, transformation and transduction. Providing probiotics (live microbial feed supplement) benefits the host through the following mechanisms:

(1) Inhibiting the growth of pathogenic bacteria from colonizing and proliferating in the gut through competition for nutrient and attachment site

(2) Production of bacteriostatic and bactericidal substances against pathogens

(3) Enhancing gut barrier function and

(4) Enhancing host immunity.

Poultry litter microorganisms influence gut microbiome

Chickens are in constant contact with the micro organisms from the surrounding environment. The poultry litter usually harbors a complex microbial community. Reuse of poultry litter commonly practiced by poultry farmers to reduce produce cost, influences chicken guts micro biome. The reused litter may also harbor disease-causing micro organisms from the previous flock and thus serves as a source of pathogens to the subsequent flock.


The gut represents an essential microbial ecosystem that lives in symbiosis with the host. The development of GI micro biome plays a crucial role in the nutrition, health and growth of the chicken. Thus further research on the intestinal micro biome of the poultry can potentially provide us more knowledge to improve management of poultry diseases, antibiotic resistance and better control of colonization and spread of human pathogens.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd

Changing Trends in Antibiotic Use in the Poultry Industry

Changing Trends in Antibiotic Use in the Poultry IndustryA major feature of poultry production nowadays is the reduction of in use of antibiotics as growth promoters, and this is majorly due to concerns over bacterial resistance.

Antibiotics used in a widespread manner as a feed additive can lead to development of Bacterial resistance as the residual antibiotics in the tissues of poultry can be consumed by humans. The bacteria resistant to antimicrobials may also get transferred from one individual to another individual leading to reduced performance of antimicrobials in humans.  This prompted the WHO in 1997 and the Economic and Social Committee of the European Union in 1998 to conclude that the use of antimicrobials in poultry could be a possible risk for the general health and well being of humans.

Many organisations are focusing their research on the development of alternative strategies to maintain the gut health of poultry and enhance performance of poultry by using various other substances, commonly known as natural growth promoters (NGPs). These Natural Growth Promoters have been identified as effective alternatives to antibiotics. A good popularity has been gained by Phytobiotics as NGPs especially, due to their beneficial effect on gut health, performance of birds and positive effects on the immunity of the bird.

Phytobiotics can be defined as plant derived products added to feed in order to improve performance. They originate from leaves, roots, tubers or fruits of herbs, spices and other plants. Phytobiotics are basically of plant origin, and popular extracts that are gaining interest among researchers and poultry producers are thyme, oregano, turmeric and garlic.

Keeping in mind the changing trends in the market, Vinayak Ingredients launched a natural growth promoter by the brand name Herbofloxin. Herbofloxin maintains the health of the gut and as an alternative to antibiotics. It has phyto-constituents of antibacterial nature that target the gut pathogens including important zoonotic bacteria. As a result, Herbofloxin promotes the growth of commensals.

Herbofloxin provides immune-modulator effect which improves tolerance to pathogenic bacteria and improves gastrointestinal micro-climate so as to improve the digestibility and uptake of nutrients. All these results almost nullify the requirement of antibiotics making it as an effective natural antimicrobial growth promoter.

Poultry Feed Supplements Manufacturers and Suppliers in India – Vinayak Ingredients India Pvt Ltd