Micro Emulsions in Poultry

Micro Emulsions in PoultryMicro emulsions in Poultry are dispersion’s of oil and water with an emulsifier. They are clear, thermodynamically stable, isotropic liquid mixtures. They are super solvents which improves stability and thermodynamic activity of formulation. Micro emulsions are beneficial to be used because it increases efficacy of the formulation allowing dose reduction. The average particle size of micro emulsion is 0.1 micrometer which helps in increasing the inter facial area thereby allowing active ingredient to get released easily. In poultry, micro emulsions are designed to include natural essential oils cell wall which in turn binds to mycotoxins to protect animals against mycotoxosis.

Vinayak Ingredients have introduced micro emulsion which is an alternative to antibioticsnamed as Herbofloxin. It is of natural origin prepared from essential oil of syzygium, citronella, thymus, eucalyptus. Herbofloxin has a particle size less than 0.1 micrometer which makes it easily soluble in water. It maintains poultry gut’s pH-6.5 to 6.7 which is slightly acidic. As it is a micro emulsion it has better dispersion in water, stable at 45 degree Celsius temperature and has a longer shelf life. All these factors makes it safe to be consumed by poultry without having any side effects which are otherwise usually caused by using antibiotics. Herbofloxin is natural replacer for antibiotic growth promoters.

Mechanism of action: Herbofloxin being a micro emulsion when mixed with water forms nano emulsion due to which particle size decreases further making it easier to penetrate the bacterial cell wall and disrupt it. Disruption of cell wall leads to killing of bad bacteria such as Escherichia coli, Campylobacter, Clostridium and Salmonella. Thus it acts like a bacteriostatic. It also acts as an anti-inflammatory by improving mucin coverage which is a first line of defence in poultry.

Herbofloxin as a micro emulsion replaces antibiotics such as tetracycline’s, fluoroquinolones, amino glycosides and selectively modulates poultry gut to promote the beneficial microflora.

Main Issues to Consider for Organic Poultry Production

Main Issues to Consider for Organic Poultry ProductionIf you are considering establishing an organic poultry enterprise there are many issues you will need to think about. These are some of the most important:

Soil type: The soil needs to be relatively free draining. Heavy, wet land not only makes access difficult, it also creates more challenges for the birds;

Shelter: Poultry need a sheltered environment. Exposed locations should be avoided if possible;

Labour: Organic poultry production is more labour intensive than conventional systems; the birds are housed in smaller groups, often in mobile housing. As the houses are often moved around the farm, there may be instances where the birds are some distance from the farm buildings;

Infrastructure: Water should be available in the house (both at the brooding and rearing stages), and preferably also on the range. You will need good access all year round, to feed, observe and manage the birds. At certain points in the rotation, the houses may be some distance from the farm yard, and this may mean a significant amount of travelling, sometimes in less than ideal weather conditions;

Capital: A considerable amount of capital investment is required to establish a successful and efficient organic poultry production unit of any reasonable size. This may, depending on whether there are existing slaughter facilities available to you, also require setting up a processing unit on farm;

Feed: The move towards 100% organic ration, increasing feed prices and the emphasis organic principles place on home grown feed mean that feed is a major consideration when considering setting up or converting to an organic poultry system.

What is the effect of KiFAY on IGF-1 and protein accretion in broilers?

What is the effect of KiFAY on IGF1 and protein accretion in broilers - Vinayak IngredientsA comparative study was performed to investigate the efficacy of KiFAY™ as a feed additive on performance parameters, thyroid, and pancreatic hormone levels in broilers. Ninety birds (Vencobb 400) were randomly divided into three groups viz., Control (no DL-methionine supplementation), Treatment 1 (containing added DL-methionine) and Treatment2 (containing KiFAY™ and without DL-methionine supplementation). The performance parameters (weekly body weight, body weight gain, feed intake, and feed consumption ratio) were recorded and calculated during the whole study of 4 weeks. Analysis of insulin and insulin-like growth factor (IGF1), triiodothyronine (T3), thyroxine (T4) and thyroid stimulating Hormone (TSH) were performed at the end of the study.

The results show that birds on supplementation of KiFAY™ performed significantly (p<0.001) better than other treatments. The weekly body weight, body weight gain, feed in-take and feed consumption ratio improved in KiFAY™ treated birds. The study shows an increase in insulin and IGF1 levels (p<0.001) in KiFAY™ than other treatments. Serum T3, T4 and TSH levels in the treatment2 were higher than other treatments (p<0.001). The KiFAY™ supplementation was able to improve performance with associated responses at a hormonal level in broilers.

Effect of Protein and Amino Acids on Fat Deposition in Poultry

Effect of Protein and Amino Acids on Fat Deposition in Poultry - Vinayak IngredientsThe abdominal fat tissue is very important in chickens due to its rapid growth as compared with other fat tissues. Most fatty acids are produced in the liver and stored as triglycerides in adipose tissues. Thus, the abdominal fat is a reliable parameter for estimating total body fat content as it directly correlates with the total lipid content in avian species. Nutritional factors play a key role in regulating body fat deposition. Therefore, this article discusses the effect of two such nutritional factors viz., protein and amino acids on the abdominal fat content and the mechanism of regulating abdominal fat deposition in poultry in a beneficial manner.

Protein is the most expensive component of poultry diets. The increase in the dietary protein content improves the daily weight gain, carcass yield, and meat quality by reducing body fat deposition and increasing protein content. A report shows that reducing dietary protein level during the starter, grower, and finisher phase, and compared with normal-protein diets as recommended by NRC, 1994 led to a significant increase in the abdominal fat content. An analogous study where increasing dietary protein level in the diets of broiler chickens in all three phases led to a significant reduction abdominal fat deposition compared with diets formulated according to NRC (1994) causing lean broiler chickens. Therefore, dietary protein content must play a direct or indirect role in the regulation of lipid metabolism. In 2002, it was found that reducing dietary protein content upregulates malic enzyme mRNA expression increases malic enzyme activity in the liver of broilers compared with the control, and vice versa. Further study also showed that increasing dietary protein content caused a significant reduction in hepatic enzyme mRNA expression in the livers of broiler chickens. Therefore, dietary protein level directly affects body fat deposition. Thus, it is important to suffice the protein requirements of birds to produce high-quality meat with low-fat deposition.

At present, only methionine, lysine, and arginine are known to beneficially regulate body fat deposition in poultry. Therefore, the addition of these amino acids in poultry diets should be ensured to prevent unnecessary fat deposition. Among these, methionine is the first limiting amino acid in poultry diet. It is essential amino acid as it directly affects on growth performance and helps in producing lean meat. A report shows that inclusion of L-methionine in poultry diet leads to a significant reduction in body fat content. The effect of dietary L-methionine in reducing the fat deposition may be associated with changes in lipolysis and lipogenesis. Lysine also has a prominent role in meat quality by increasing protein deposition, reducing the water-holding capacity, and enhancing muscle pH. The lysine supplementation in poultry diets significantly enhances lean meat production. A meat-type ducks fed with lysine-deficient diet gave significant high abdominal fat percentage while the inclusion of lysine eliminated this effect. Hence, addition of lysine in poultry diets promotes lean meat production by reducing carcass fatness via lipogenesis inhibition.

Another essential amino acid is the arginine which plays multiple roles in poultry production, implicated in reduction of carcass fat deposition. A study reports a significant reduction in the abdominal fat content in Japanese quails at 42 day of age 2.0% arginine supplementation at day zero of incubation. A corresponding study reported that providing 1.0% more arginine in addition to the NRC (1994) recommendations reduces the abdominal fat content by decreasing the activities of enzymes involved lipogenesis. In avian species, therefore, dietary L-arginine supplementation inhibits certain hepatic enzymes, which causes a reduction in the abdominal fat content by reducing the size of abdominal adipose cells.

Hence, the fat-reducing effects of protein and certain amino acids have not been fully clear. Thus this article makes an effort to elucidate our current understanding of the mechanism related to the effects of protein and amino acids that beneficially regulate abdominal fat deposition in poultry.

7 Main Nutrition Requirements in Egg Layers

7 Main Nutrition Requirements in Egg Layers - Vinayak IngredientsPoultry diets are a mixture of several feed stuffs such as soybean meal, cereal grains, fats, animal by-product meals, and vitamin and mineral premixes. Here are the few main nutrients which producer must not ignore when planning the feed diet.

ENERGY

The main source of energy for poultry is dietary carbohydrates. Corn, grain sorghum, wheat, and barley are important carbohydrates to poultry diets. These adversely affect the digestive processes of poultry when present in sufficient dietary concentrations. For example, pentosan and beta glucans of rye and barley respectively increase the viscosity of digesta and helps in nutrient absorption of poultry. Supplementation of rye or barley with dietary enzyme improves nutrient utilisation and growth of young poultry.

PROTEIN

Dietary requirements for protein are actually requirements for the amino acids contained in the dietary protein. They are main constituents of structural and protective tissues, such as feathers, bone matrix, skin, and ligaments, including organs and muscles. The individual amino acids and short peptides after digestion-absorption may serve a variety of metabolic functions and precursor to biochemical pathways. Insufficient dietary protein leads to slow growth or less productivity.

MINERAL

Minerals are the inorganic part of feeds or tissues. Calcium and phosphorus are essential for the formation and maintenance of the skeleton and eggshell formation. Sodium, potassium, magnesium, and chloride function with phosphates and bicarbonate to maintain homeostasis of osmotic relationships and pH throughout the body. The forms of phosphorus, such as ATP and phospholipids if present in plants, can be digested by poultry; however, such digestible forms usually account for only 30 to 40 percent of the total phosphorus. The remaining phosphorus is present as phytate phosphorus and is poorly digested. Trace elements, including copper, iodine, iron, manganese, selenium, and zinc are required in small amounts in the diet. Trace elements function as part of larger organic molecules. Iron is a part of haemoglobin and cytochromes, and iodine is a part of thyroxine.

VITAMINS

Vitamin C is synthesised by poultry and is, accordingly, not considered a required dietary nutrient. The dietary requirement for vitamin E is highly variable and depends on the concentration and type of fat in the diet, the concentration of selenium, and the presence of prooxidants and antioxidants. Vitamin K activity is exhibited by a number of naturally occurring and synthetic compounds with varying solubilities in fat and water.

WATER

Water must be regarded as an essential nutrient, although it is not possible to state precise requirements. The amount needed depends on environmental temperature and relative humidity, the composition of the diet, rate of growth or egg production, and efficiency of kidney resorption of water in individual birds.

XANTHOPHYLLS

The carotenoid pigments not only provide yellow-orange coloration of egg yolks and poultry fat but also contribute to coloration of the skin, feet, and beak. Alfalfa meal contains lutein which provides a yellow colour, whereas corn and corn gluten meal contain primarily zeaxanthin which impart as orange-red colour. Synthetic carotenoids are also used approved by the regulatory agencies used in poultry diets as the concentration of the desired pigments in natural feed stuff is not always constant.

ANTIMICROBIALS

Antimicrobial agents are nutritional feed additives/growth promoters and are not nutrients as they are essential to poultry. They are included in diets to improve growth, efficiency of feed utilisation and livability. They are added at relatively low concentrations (1 to 50 mg/kg), depending on the agent and stage of development of poultry.

Poultry diets are a mixture of several feed stuffs such as soybean meal, cereal grains, fats, animal by-product meals, and vitamin and mineral premixes. Here are the few main nutrients which producer must not ignore when planning the feed diet.